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Abstract. Differential and integral features of incoherent X-radiation, induced by relativistic electrons in
crystals, are studied for observation angles θγ several times greater than γ−1, where γ is the projectile
Lorentz factor. The existence of sharp maxima and a minimum of the five-folded incoherent differential
cross-section as a function of the final electron angles, and a dip minimum when the cross-section is taken
as a function of the photon energies, is demonstrated. At near backward observation angles the three-folded
cross-section shows a maximum in the region of several keV photon energies. The obtained results allow
us to optimize the conditions for coincidence experiments, minimizing the incoherent contribution to the
total radiation yield, and helping to analyse results of finite-size detector experiments with crystal targets.

PACS. 41.75.Ht Relativistic electron and positron beams – 78.70.Ck X-ray scattering

1 Introduction

The passage of a relativistic charged particle through a
crystalline target is accompanied by the emission of coher-
ent and incoherent radiation. The properties of coherent
X-radiation produced by electrons of several tens of MeV
in a crystalline target, like absolute intensity [1,2] spectral
and angular dependences [2–4] and interference effect [5,
6] have been thoroughly investigated. The results of those
studies were summarized in [4], where it was shown quanti-
tatively that quasi-monochromatic, tunable and polarized
X-radiation sources, using moderate electron beam ener-
gies, can be designed based on the coherent X-radiation
process. Such sources might be used for purposes of medi-
cal physics, industrial radiography and in a variety of other
areas.

The properties of the incoherent bremsstrahlung were
studied only in earlier works [7,8] without taking into ac-
count the radiation from crystal electrons. Thus, the prob-
lem was restricted to the case where the projectiles radiate
in screened fields of crystal nuclei and in the near-forward
direction. At the same time, at large observation angles
the radiation from the target is formed mainly by the po-
larization mechanism and, to our knowledge, this question
is not investigated yet.
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The aim of the present paper is to study the dif-
ferential and integral properties of incoherent X-ray
bremsstrahlung produced in a crystal by a relativistic elec-
tron with several tens of MeV and observed at angles θγ

several times greater than γ−1, where γ is the projectile
Lorentz factor, i.e., for those observation angles, where
the contribution of the polarization term to the total cross-
section is comparable with the static one or dominates the
whole process. We carry out our study for the case when
a projectile interacts with a crystal atom as a whole. As a
result, the interference effect between different radiation
mechanisms could be important.

A detailed knowledge of the differential cross-section,
as well as the cross-section integrated over the angles of
the final electron, are of particular importance for the
analysis of experiments using finite-size detectors. An eval-
uation of the cross-section for a particular set of angles
could give totally incorrect values for the cross-section in-
tegrated over the finite detector solid angles, as shown
by Maximon et al. [9]. In this respect, we point out the
results obtained in [10], where it was found that the abso-
lute intensity of the parametric X-radiation, detected near
180◦ with respect to the direction of the electron beam
and at photon energies of ∼ 3 keV, is twice larger as pre-
dicted from the kinematic theory. As shown in the present
paper, at such photon energies and observation angles,
the incoherent cross-section achieves its maximum and,
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Fig. 1. The laboratory coordinate system. k is the wave vector
of the bremsstrahlung photon; p1 and p2 are the initial and
final momenta of the incident electron, respectively. p1 is di-
rected along the z-axis, θγ is the angle between k and p1; θe is
the angle between p1 and p2; θe1 is the angle between p1 and
p2, when p2 lies in the (x, z)-plane; ϕLab is the angle between
the planes (k,p1) and (p1,p2).

therefore, the above experimental result could be ex-
plained as a contribution of incoherent radiation compo-
nents to the resulting radiation yield.

2 Incoherent cross-section

2.1 General notation

The momentum diagram of the considered process is
shown in fig. 1. The initial electron with momentum p1

and energy E1 interacts with a crystalline target and, in
the final state, there are a scattered electron with momen-
tum p2, energy E2 and a bremsstrahlung photon with mo-
mentum k and energy ω. During this interaction the target
acquires momentum q = p1 − p2 − k. The q-range spans
from qmin up to qmax. Both qmin and qmax are defined by
the energy and momentum conservation laws.

We will examine the low momentum transfer region,
where the projectile interacts with an atom as a whole,
and the long-wavelength approximation is valid. The ra-
diation matrix element is a sum of two terms, where the
first corresponds to static (Bethe-Heitler) bremsstrahlung,
emitted by the projectile itself, and the second arises from
the dynamic polarization of the atomic electrons in the
fields of the incoming particle and the bremsstrahlung
photon (“atomic” bremsstrahlung [11],[12]). To avoid can-
cellations and losses of sharp structure effects in the five-
folded differential cross-section, the study of the differen-
tial properties of the cross-section and its integration over
the solid angle for the outgoing electrons are most con-
venient to accomplish in the photon-oriented coordinate
system (fig. 2), a spherical coordinate system where the

ϕ

θ
θ

Fig. 2. The photon-oriented coordinate system. ϕ is the angle
between the planes (k,p1) and (k,p2).

polar axis coincides with the photon momentum direction.
In this system, the angles θ1 and θ2 describe the initial and
final electron momentum directions. In the following anal-
ysis, we will use the photon and laboratory systems, but
the final results will be presented in the laboratory sys-
tem, where the z -axis is directed along the vector p1. In
this system, θγ is the angle between the vectors k and p1,
θγ = θ1, and θe is the angle between p1 and p2, as shown
in fig. 1.

2.2 The crystal cross-section

The radiation cross-section, in the case of a crystal, can
be written for photon energies greater than the electronic
binding energies as a product of the diffraction factor f
and an atomic cross-section dσat, in the following way [7,
8]:

dσcr = fdσat = dσinc + dσcoh, (1)

and f is the sum of the incoherent and coherent parts,

f = finc + fcoh, (2)

and

finc =
[
1 − exp

(−q2u2
)]

,

fcoh =
(2π)3

VcN
exp

(−q2u2
) ∑

g

S2 (q) δ (q − g) .

In eq. (2) u2 is the mean-square temperature displace-
ment of the atoms from their equilibrium positions; Vc is
the volume of the unit crystal cell; g is a reciprocal lattice
vector; N is the number of atoms per unit cell; and S (q)
is the crystal structure factor, S (q) =

∑
exp(iqri), where

ri describes the position of the i-th atom within the cell.
Note that both the incoherent and coherent cross-sections
are normalized for a target thickness of 1 atom/cm2.

As it follows from eq. (1), the coherent cross-section
dσcoh can be large only when the momentum transferred
is very close to that of the reciprocal lattice vectors. In
this case, each atom in the crystal gives a contribution
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to the radiative matrix element and, therefore, the coher-
ent X-radiation can be considered as a process involving
only two particles, namely, the relativistic electron and the
crystal. In contrast with the coherent process, the momen-
tum transfer spectrum for the incoherent process is a con-
tinuum. The crystal atoms make their contributions to the
incoherent radiative amplitude with different phases, and
the cross-section of radiation generated by the interaction
between the projectile and a single atom in the crystal is
multiplied by the incoherent factor finc, which can be sig-
nificantly smaller than 1, as compared to the amorphous
case.

2.3 The atomic cross-section

The amplitude of the radiation due to the interaction of
the projectile with the screened nucleus is well known [13],
and for our purposes it can be presented in the form (� =
c = 1):

Mst =
(2π)3/2e3

m(E1E2ω)1/2

Z−F (q)
γq2

ef

[
p1

ω−kv1
− p2

ω−kv2

]
,

(3)
where ef is the polarization vector of the photon; e and
m are the electron charge and mass, respectively; Z is the
atomic number of the crystal; v1 and v2 are the projec-
tile velocities before and after radiation, respectively, and
F (q) is the form factor of the atom. The general expres-
sion for the polarization amplitude, in the case of the non-
relativistic atom, has been obtained by Amusia et al. [14]:

Mpol =
(2π)3/2e

(E1E2ω)1/2
ef

ωv1 − q
(k + q) − k2

ωα(ω, q), (4)

where α(ω, q) is the dynamic polarizability of the atom.
Note that, process described by Mpol is equivalent to
the coherent Rayleigh scattering of virtual photons as-
sociated with the projectile. For the photon energies un-
der consideration, the function α(ω, q) can be replaced
by −e2F (q)/mω2, and the total radiation cross-section
summed over photon polarizations has the form [15]:

dσat =σ0(ω)Z2p2
2dωdΩγdΩp2

×
[
n×

(
1−F (q)

γq2 (1−β cos θγ)
q+

F (q)
(k+q)−k2

(kβ−q)
)]2

. (5)

In eq. (5) σ0(ω) = αr2
e/π2ω; α=1/137; re is the clas-

sical electron radius; β ≡ v1; n = k/k; dΩp2 is a solid
angle around the direction of p2 and dΩγ is a solid angle
around θγ .

In the photon-oriented coordinate system (fig. 2), the
atomic cross-section, eq. (5), can be presented in the fol-
lowing form:

dσat = dσst + dσpol + dσint, (6)

where

dσst =σ0(ω)Z2p2
2

[
1−F (q)

γq2 (1−β cos θγ)

]2

T1dωdΩγdΩp2 ,

(7)

dσpol = σ0(ω)Z2p2
2F

2 (q) T2dωdΩγdΩp2 ,

dσint = σ0(ω)Z2p2
2

2F (q) [1 − F (q)]
γq2 (1 − β cos θγ)

T3dωdΩγdΩp2 ,

T1 = p2
1 sin2 θγ + p2

2 sin2 θ2 − 2p1p2 sin θγ sin θ2 cos ϕ,

T2 =
k2β2 sin2 θγ−2kβ sin θγ [p1sin θγ−p2 sin θ2cos ϕ]+T1

[2k (p1cos θγ−p2 cos θ2−k)+q2]2
,

T3 =
kβ sin θγ [p1 sin θγ − p2 sin θ2 cos ϕ] − T1

2k (p1 cos θγ − p2 cos θ2 − k) + q2
,

q = p2
1 + p2

2 + k2 − 2p1k cos θγ + 2p2k cos θ2

−2p1p2 (cos θγ cos θ2 + sin θγ sin θ2 cos ϕ)

and ϕ is the angle between the planes (k,p1) and (k,p2)
as in fig. 2. In eq. (6) dσst and dσpol represent the static
and polarization contributions, respectively, and dσint de-
scribes the contribution resulting from the interference ef-
fect between these processes. Note that the connection be-
tween ϕ and ϕLab, which is the angle between the planes
(k,p1) and (p1,p2) in the laboratory system, is

tan ϕ =
sin θe sin ϕLab

sin θe cos ϕLab cos θγ + cos θe sin θγ
. (8)

The incoherent radiation cross-section is the product
of the atomic cross-section, eq. (6), and finc, eq. (2).

3 Results and discussion

3.1 Properties of d5σinc/dωdΩγdΩp2

The main differential characteristics of the incoherent
cross-section are presented in figs. 3-7. We next consider
the case of a silicon crystal which is kept at the room
temperature.

σ

σ

σ

ω

ω

Fig. 3. Contributions to the incoherent five-folded cross-
section. dσst, dσint, and dσpol in a silicon crystal are shown
as functions of ω. E1 = 15 MeV, θγ = 40◦, θe = 3 × 10−4 rad,
ϕLab = 0◦. The function q(ω) is represented by the dashed line.
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Fig. 4. Total five-folded incoherent cross-section as a function of the photon energy for θe = 3 × 10−4 rad, E1 = 15 MeV,
ϕLab = 0◦ and four selected values of θγ . The dotted lines denote dependences for the amorphous case, and the dashed lines
are for q(ω).

The dependence of the five-folded incoherent cross-
section components, dσst, dσint, and dσpol on the photon
energy is shown in fig. 3 for θγ = 40◦ and for those angles
in the photon-oriented system, which correspond to the
laboratory system angles θe = 3 × 10−4 rad and ϕLab=
0. The dashed line in this figure indicates the dependence
q(ω). It is clear that the main contributions to the to-
tal five-folded incoherent cross-section come from dσpol

and dσint. The cross-sections dσst and dσpol have minima
at photon energies corresponding to momentum transfers
close to the kinematically allowed minimum, q � qmin,
where

qmin =k(1−cos θγ)+
1
2

k2

p1
(1+sin2 θγ)+O(k3/p2

1). (9)

As shown in fig. 3, the interference contribution
changes its sign at q = qmin. Note that in the case of
relativistic positrons dσint has the opposite sign.

In fig. 4 the dependence of the total five-folded in-
coherent cross-section versus photon energy is shown for
θe = 3 × 10−4 rad, ϕLab= 0◦ and for four observation an-
gles. In these figures the functions q (ω) are represented
by the dashed lines, and the dotted lines show the corre-
sponding dependences for the case of an amorphous tar-
get. As it follows from the figures, the dependences of the

cross-sections in the crystal and amorphous cases differ
strongly for all observation angles exept θγ near the back-
ward direction.

Introducing the vector ∆p = p1 − p2 = q + k =
∆p⊥ +∆p‖, where |∆p⊥| = p2θe,

∣∣∆p‖
∣∣ = p1 −p2 we can

write in the laboratory system q2 = (∆p‖ − k cos θγ)2 +
∆p2

⊥ cos2 ϕLab + (∆p⊥ sinϕLab − k sin θγ)2 and find that
q2 achieves its minimal value at

ωmin =
bp1θe(cosϕLab(θecosϕLab+b sin θγ)+θesinϕLab)

(1−b cos θγ)2+(θecos ϕLab+b sin θγ)2+θ2
e sin

2ϕLab

,

(10)
where b = p1/E1. The incoherent cross-section minimum
shifts to higher photon energies as θe increases, and it
shifts to the extremely soft energy range as the observation
angle increases. At fixed θe minima in q(ω) and, therefore,
in the cross-section, disappear at angles ϕLab � |π + ∆ϕ|,
where

∆ϕ =
θe

b sin θγ
(11)

and at ϕLab = 0 they disappear for observation angles
larger than θγ0, where θγ0 = π − θe/2.

The angular dependence of the partial cross-section
components on θe1, where θe1 is the angle between p1 and
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Fig. 5. The contributions of various mechanisms to the five-
folded incoherent cross-section as functions of θe1 (see fig. 1)
for E1 = 15 MeV, ω = 5 keV and pointed out θγ .

p2, when p2 lies in the (x, z)-plane (fig. 1), is shown in
fig. 5 for the cases θγ = 10◦, 20◦ and ω = 5 keV. The
cross-sections vary with θe1 rapidly and dσpol makes its
contribution to the total cross-section into much narrow
angle range than dσst. As the observation angle increases,
the static and interference contributions become negligi-
ble.

For the cases θγ = 40◦ (ω = 5 and 30 keV) and
θγ = 160◦ (ω = 5 keV) the angular dependence of the
cross-section on θe1 is shown in fig. 6. It is seen from this
figure that, for the observation angles we pointed out, the
cross-section has a “two-hump” character. To find values
of θe1, at which the cross-section achieves its extrema, we
note that at large θγ the main contribution to the cross-
section arises from the polarization term and, therefore,
the incoherent cross-section is proportional to the square
of the function

f(θγ , θe1, k) =
(kβ − ∆p‖) sin θγ − ∆p⊥ cos θγ

∆p2 − k2
. (12)

The extrema are then determined from ∂f/∂θe1 = 0,
from which it can be found that the maximal values of the
cross-section are at angles

θe1,max = ± 1
p1

√
∆p2

‖ − k2, (13)

and d5σinc achieves its minimun at

θe1,min = − k

2γ2p1
tan θγ + O(k2/p2

1). (14)

As follows from eq. (13), the position of maximal cross-
section values do not depend on θγ . The angular de-
pendence of the cross-section changes drastically as θγ

achieves values near to 90◦. This fact is illustrated by
fig. 7, where the cross section is shown for θγ = 85◦ and
90◦. At θγ = 90◦ the cross-section has only one maximum
localized at θe1 = 0◦.

By using eq. (12) we can find the ratio between the
cross-section maxima. Noting that F (q) as well as the in-
coherent diffraction factor differ very small at points given

Fig. 6. The five-folded cross-sections as functions of θe1 (see
fig. 1) for E1 = 15 MeV and selected sets of ω and θγ .

ω θγ

ω θγ

θ

Fig. 7. The five-folded cross-sections at θγ = 85◦ and 90◦,
E1 = 15 MeV.
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by eq. (13), it can be found that

d5σ
(−)
inc

d5σ
(+)
inc

=
[
(kβ − ∆p‖) sin θγ − p2 |θe1,max| cos θγ

(kβ − ∆p‖) sin θγ + p2 |θe1,max| cos θγ

]2

,

(15)
where the indexes (−), (+) refer to the sign of θe1 (fig. 1).

We observe from eq. (15) that the relation between the
cross-section maxima changes when the observation angle
becomes higher than 90◦. This fact is illustrated in fig. 6
for θγ = 40◦ and 160◦.

3.2 Properties of d3σinc/dωdΩγ

As it seems from the above consideration, the five-folded
cross-section has a complex character with dip minima
and maxima, and considerable care is required for the in-
tegration of the five-folded cross-section over the final elec-
tron angles. We integrated d5σinc in the photon-oriented
coordinate system using the Monte Carlo approach [16].
The upper limit for momentum transfers was defined
as q � 5a−1, where a = 0.885a0Z

−1/3 is a screening
(Thomas-Fermi) radius with a0 the Bohr radius. At inte-
gration, the values of F (q) were obtained by linear inter-
polation from the values given in [17]. The integration in
the region q > 5a−1 gives only a few percent contribution
to the final result. The angle ϕ was generated randomly
in the range ±ϕmax with uniform distribution. The angle
θ2 was generated randomly in the range [θmin, θmax] with
the distribution uniform in cos θ2:

θ2 = arccos (cos θmin − (cos θmin − cos θmax) ξ) ,

where ξ is a chance number uniformily distributed in the
range [0, 1]; θmin, θmax and ϕmax are the angular limits in
the photon-oriented system corresponding to q = 5a−1.
The relations between these angles and laboratory system
angles can be found in [16].

The set of the three generated angles θ1, θ2 and ϕ was
used for the calculation of q, and if q were less than qmax

this set would be used to calculate the average five-folded
differential cross-section:

〈
d5σ

〉
=

1
N

N∑
i=1

d5σi,

d3σ =
〈
d5σ

〉
∆Ω,

where N is the number of the Monte Carlo starts, and
∆Ω is the secondary electron solid angle, which was also
calculated by MC simulation in the photon-oriented sys-
tem [16].

The contributions of the various mechanisms to the
three-folded incoherent cross-section, as functions of the
observation angle, are presented in fig. 8 for an electron
beam energy of 15 MeV. It is seen from this figure that the
polarization contribution begins to play an essential role
in the total radiation yield at θγ � 20◦. The most promi-
nent feature of the incoherent cross-section in a crystal
is the maximum near the backward observation direction.

µ

θγ

Fig. 8. The contributions of various mechanisms to the three-
folded incoherent cross-section in a silicon crystal as functions
of θγ for E1 = 15 MeV and ω = 5 keV. The open circles
correspond to d3σpol, crosses to d3σint and triangles to d3σst.
The solid curve shows the polarization contribution for a non-
crystal target.

This maximum results from the decreasing of the denom-
inator in eqs. (4) at these conditions. Note that the above
feature results from the suppression of the radiation in
a crystal, and it manifests itself much more weakly in
the amorphous case. When the observation angles tend
to 180◦, the incoherent cross-section falls rapidly. Contri-
bution of the interference term to the total cross-section
depends on the charge sign of the projectile. By this rea-
son, the angular behaviour of the cross-section near the
small observation angles will be opposite in the case of
a relativistic positron. For comparison, the polarization
cross-section for the case of a silicon amorphous target is
shown in fig. 8 by the solid line. Angular dependence of
this cross-section is similar to that which was obtained
in [18] using the local electron density method and the
Thomas-Fermi statistical model. It achieves maximal val-

µ

θγ

Fig. 9. The polarization three-folded cross-section in a silicon
crystal as a function of θγ for some selected photon energies.
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ues near the forward direction, has the minimum at angles
about 90◦ and then increases slowly at θγ > 90◦.

Note, that we did not take into account the nuclear-
structure effects, which were studied in [19]. These effects
are important at large momentum transfers only.

As the photon energy increases, the decreasing of F (q)
leads to the disappearance of the maximum of the inco-
herent cross-section. This feature is illustrated by fig. 9,
where the cross-section is shown for several photon ener-
gies.

4 Conclusion

The differential and integral features for the incoherent
cross-section of X-radiation produced by a relativistic elec-
tron in a single crystal, were studied for a momentum
transfer region where the projectile interacts with the
crystal atom as a whole, and making a significant con-
tribution to the resulting radiation yield.

It is shown that the incoherent cross-section has a pro-
nounced structure as a function of both the final elec-
tron angles and the photon energy. In particular, a sharp
dip was found in the region of small momentum trans-
fers, which is near to the minimum kinematically allowed
momentum transfer. Note that this feature of incoher-
ent X-radiation is at variance with static bremsstrahlung,
where the cross-section has a maximum in the same region
([9],[20]).

Explicit numerical calculations have demonstrated
that the three-folded incoherent cross-section for photon
energies up to 10 keV achieves its maximal values near
the backward angles in respect to the direction of the rel-
ativistic particles.

Our findings could be useful to analyse results of exper-
iments where coherent processes resulting from the inter-
action of relativistic particles with crystals (e.g., coherent

X-radiation, channeling radiation, as well as interference
effects between them) are studied.

This work was partially supported by CNPq and FAPESP.
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